This supercomputer simulation demonstrates
one of the greatest powerful occasions in the universe: a pair of neutron stars
striking, merging and creating a black hole.
A neutron star is the dense core
left behind when a star born with between eight and 30 times the sun's mass detonates
as a supernova. Neutron stars have about 1.5 times the mass of the sun
compressed into a ball just 12 miles across. As the simulation initiates,
we view an inequitably matched pair of neutron stars balancing 1.4 and 1.7
solar masses. They are parted by only about 11 miles, faintly less distance
than their own diameters. Redder colors indicated regions of increasingly lower
density.
As the stars spiral to each
other, penetrating currents begin to collapse them, maybe cracking their layers.
Neutron stars hold unbelievable density, but their outsides are moderately
thin, with densities about a million times greater than gold. Their centers
crush matter to a much greater degree densities increase by 100 million times
in their cores. To begin to visualize such mind-bending densities, iamgine that
a cubic centimeter of neutron star material outweighs Mount Everest. Scientists consider neutron
star fusions like this produce short gamma-ray bursts (GRBs). Short GRBs last
less than two seconds however release as much energy as all the stars in our
galaxy release over one year.
(If you find any error or miscalculation in
this article then please feel free to share in comment and if you want to
expand this article then comment below)